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ABSTRACT

This report deals with theoretical investigations in the area
of linear atmospheric propagation phenomena and microturbulence
statistics. It specifically deals with the examination of proper
averaging times required for propagation experiments and with theo-
retical backup for phase structure function measurements. Finally,

a bibliography on optical propagation which was prepared earlier
has been updated.
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INTERIM TECHNICAL REPORT

INTRODUCTION

This is the first interim report under Contract No. F 30602-71-0132
entitled "Investigation of Laser Propagation Phenomena." This effort
is aimed at providing theoretical support to the RADC Laser Propagation
Program. The report covers the period January 1, 1971 to July 1, 1971.

The theoretical support is in the area of linear atmospheric
propagation phenomena and microturbulence statistics. Other areas include
theoretical support to the performance of propagation experiments and
in the interpretation and processing of the data to ensure proper match
between theory and experiment.

During the past six months effort has been concentrated in two
areas; examination of proper averaging times required for propagation
experiments and theoretical backup for phase structure function measure-
ments. A bibliography on optical propagation prepared previously was
also updated. The work on averaging times is in direct support to
the experimental program at RADC because it is intended to supply
information to be used in the data taking procedure. Some suggestions
have already been incorporated into the data-taking procedure. The
phase structure function work consists of the calculation of curves of
interest in experiment design and interpretation. Specifically the
curves predict the contribution of various portions of the path to the
final measured value of the phase structure function for a spherical
wave and for horizontal and slant paths in the turbulent boundary layer.
These will be useful in interpretation of results and in future design
of experiments. The bibliography is an extension of a previous work.

These items will now be considered in detail starting with the
work on awveraging times!

AVERAGING TIMES

In any type of measuremant involving random quantities, the
quantities of interest must be average values because it is only the
average values which have any chance of being reproducible and predictable.
Such quantities as means, variances and covariances, which are of interest
in one application or another are all examples. However, in order for
these quantities to be reproducible, and therefore meaningful, the
averages must be taken over a representative set of values, a set large
enough to include all the values to be encountered in the proper pro-
portion. It is to answer the question of how much data to take in
order to provide such a set of values that this study has been under-
taken. This study is by no means complete. The chief result t> date
has been an examination of the literature to determine the various
gpproaches used there. Results of this examination will be presented

ere,
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There are several criteria for determining what a proper
averaging time might be. They are based on precision desired and on
the duplication of conditions required by assumptions in theoretical
developments. For example, in theories of 1ight beam propagation in
random media the assumption of homogeneity and isotropy are almost always
invoked. Further one may well use the central 1imit theorem to simplify
predictions involving not too long propagation paths. In taking the
data one generally uses the ergodic theorem and measures time averages
rather than ensemble averages. Finally the upper and lower spectral
limits of the desired data must be considered. A1l of these points
depend on the averaging time for satisfactory physical implementation.
In this section we present a review of the various approaches in the
literature to quescions involving averaging times, indicating assump-
tions and making a few limited observations. Much of the work described
comes from the micrometeorological literature, the rest stemming from
communication sources. The various authors consider various aspects
of averaging times, based on the criterion selected, Ergodic principle,
etc.; and on the type of data, analog vs sampl2d data, time signals or
power spectra, etc. These approaches will now he reviewed.

In the first (Lumley and Panofsky, 1964; Davenport
and Root, 1950; Bendat and Piersol, 1966) to questions of averaging
times the question posed is how long must a time average be in order
for it to represent an ensemble average. The discussion considers a
random stationary analog signal, call it f(t). f(t) could be a direct

signal or some function of a signal. The object is to relate the time
average,

(1) T('ﬂ’=3,- f(t+t') dt'

OV —

and the ensemble average <f(t)>. Ensemble averages are denoted by
angular brackets. The measure of the di fferencs between the two is taken
to be the ensemble average square difference, o¢(t) between the two.

i
) ey = [} | fleser) gt - <f(epT>
0

az(t) is the ensenble variance of the time average.

An expression for an appropriate averaging time is worked out
in terms of B(t'), the ensemble covariance of f(t), where

(3) B(t') = <[f(t+t') - <f(t)>] [F(t) - <f(t)>]>

2

Gk Seat At

]




R S DT s ey mgeng g

and the autocorrelation p(t) = B(t)/B(0). The basic expression is
derived by first expressing Eq. (2) first as a double integral and
then by putting it in terms of the autocorrelation to give

TT
(4a) o = ‘?j j [F(t+t') - <F(t)>] [F(L+E") - <F(t)>] dt' dt">
00
TT
(4b) = B(O f f p(t'-t") dt' dt"
T 00

The basic expression is simplified by transformation to sum and dif-
ference coordinates with the subsequent performance of one of the integrals.

A 4t
R

T T-1gt

1
(6a) o = —Té—” B{0 J dt, o(t,) I dt,
0 %t]
T t
(6b) = 2.8(0) j (1 - D) olty) dt,
0

Equation (6b) can be further simplified if it is the case that the
autocorrelation p(ty) drops to zero in a time much less than T. In
that case the second term in the parenthesis inside the integral in
Eq. (6b) is negligible. The result expressed in terms of I, the
integral scale of the autocorrelation,

@ 1=ty at,
0
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Equation (8) is put in a -more useful form by expressing ¢ as a -
racti on, e, of the ensemble mean, ¢ = o/<f>, giving : 1 u
I Y | I i - o . o i | ' l ’
(9), T =280 1—2- - : R L}
<f> e . . o " !
i , 0 ! | ..i.
o |

Equation {9) 15 the basic result. It is used to give averag1ng times
fonnu'las for several random quanti t1es (Bendat and P1erso'| 1966).

| There are several pmnts iworth 1ndicating ahout this result. The
first is that it expresses an averaging time for f(t) in terms of the
. ensemble averages B(0), <f(t)> and an integral of an ensemble ‘average!
Thus, in order to estimate the averagmg time required for time average’
to duplicate the ensemble average. it is necessary to ‘already know s §
" some of these ensemble averages. To circumvent this problem,'one might
attempt a trial  run, assume that the time averaged variance, mean, and
integral scales are approximately realistic and estimate the averaging
time. If the estimated value turns out to be what has already been

used, then the neasurements are at least cons1stent within the given
framework ; | ' '

i

= - =3

= e

'

A second point is indeed more s1gn1f1cant Eq. (9) says that for
very long averaging times, the time and ensemble averages become
identical! Thus, in situations where it is impossible’or prohib1t1ve
to set up an. ensemble: of representative situations, then a time average |
can in principle be made to suffice. It was assumed that f(t) was
stationary, so that there are not any long term trends to worry about!

2
il

The final point concerns an interpretation of Eq (9). One might
regard a long time average as a sort of ensemble average if the time
‘record could be partitioned into successive segments each uncorrelated.
Then each segment could be regarded as an 'independent ensemble member
.and the time and ensemble averages: would be comparable. In that sense
the integral scale of the'autocorrelation gi ves a time propqrtmnal to L
a decorre’latwn time. The quant1ty '

s0) | S o
21——2' | , : : [

<f> ]

~



might be a little imore representative of a decorrelation time. Then
the decorrelation time divided by the square of the desired precision
gives ‘the requisite averaging time.

Alternatively, (Bendat and Piersol, 1966) one can state the same
cgncépt in different terms by defining the equivalent bandwidth, W,
‘where

C W= 1/41., . |
Then the time-bandwidth product', WT is defined as the number of degrees
of freedom and identified with the number of independent ensemble
members. Thus the fractional deviation from ensemble average, e, is
~ inversely proportional to the time-bandwidth product, as might be in-

- tuitively expected.

i If one assumes a gaussian distribution of data, the equation
) {
[ | ! ‘
A ’
T =‘2 BEO! I
<F>" ¢

can be further reduced. If the quantity to be measured is the mean square

value of u, a gaussian random variable, then B(0) = <(u2-<u2>)2> =
2<u>2, <f>2 = <u2>2, and

T‘-—-z- i

(Lumley and Panofsky, 1964). This equation, which assumes a Gaussian
'distribution, was applied to some microthermal data taken on March 23,
1371 at the Rome Air Development Center. Figure 1 shows the auto-
correlation vs delay time for a single temperature sensor. The auto-
correTation does approach a .zero value so we assume that the integral
scale does exist and trends in data are unobservable. From this graph
we find that I = 0.1 sec. and

. (8)(.1 sec)’
T= ,
X ‘
for ¢ = 10% CTa= ?o sec
' e= 5% T = 160 secs
e = 2% " T = 1000 secs
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A second approach (Charnock and Robinson, 1957) to the question
of averaging times considers sampled data, again asking how long a
data-taking duration is required. This method considers a random
function of time sampled N times over a long interval T from which are
calculated the mean

Zf—
ne~-12
-H

i

and variance
N
21 2
B0 = L (f -

The subscript N denotes explicitely the number of data samples used.

The N data samples are divided into sections of s samples each and the
question asked is how large must s be in order for the section variances,
averaged over the sections, to approximate the complete variance BN(O)

The approach is to consider the variances of the individual
sections. The quantity used for comparison is B (0), the section
variances averaged over all the sections

12) 5.(0) 1 nEI 1 as+s (s 1 a§+s ] )2
3 M a=0 S j=as+l i s as+l J

In Eq. (12) there are m sections of s=N/m samples. The sub-
script "a" indexes the individual sections. If the whole trace is con-
sidered as Just one section then s = N, m=1 and a = 0. In that case
By(0) is merely the complete sample variance indicated in Eq. (11).

¥ there is only one sample in each section, then

as+s
s=1,m=Nanda§+] fj=fa+'l

so that each term in the parenthesis in Eq. (12) is identically zero.
Thus B](O)

The question posed is what is the shape of the B¢ (0) curve as
a function of s? The behavior one would 1ike to see is to have the mean
of the section variances, BS(O), approach BN(O) for s << N. Then the
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total number of samples, N, and the averaging time, T, is well above
that required in practice. The minimum number of samples would be that
for which B(0) initially comes within some preset region near By(0).
For this situation the Bs(0) vs s curve would be similar to that of
Fig. 2a. If the total number of samples is too small then the Bg(0)
curve might have a shape more nearly like that of Fig. 2b. Thus it is

et S Sunm

BN(O) ————————— _i l:
I
| ]
* !

'B"(o) | I
I .
|
|

i N

—*s
(a)
BN(o)- -------------------

I

I

|

} |

Es(o) :
I
l
N

——+s
(b)

Fig. 2. Variance versus averaging time.
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the shape of the Bg(0) curve that determines the appropriateness of
the averaging time. The values of N and s must be sufficiently large
with s << N to give the proper shape. In a sense this is also a self-
consistency method as described because there is no a priori way
stated for determining optimum values of s or T.

Continuing with this approach (Charok and Robinson, 1957;
Pasquill, 1962; Kahn, 1957 and Smith, 1962) the main points are
made after Eq. (12) is simplified. To do this, add and subtract the
long term average, f, inside the parenthesis in Eq. (12), multiply out
the square and simplify.

m-1 , as+s as+s
132) B0 =Ly Ly (e 7. 177" (7.-9)°
a=0 > as+l as+l
(13b) NI T CIRPTONE Sl P S I
= — - f.-f)" - 2(f,-f) = f.-f) + (=
Maz0 5 as+l 1 i S as+] i S as+]
1 ™1 g asts ~2 ] asts o2
(13¢) = -~ - (f,-F)" - (= (f.-f))"]
m aZO 3 agﬂ i 5 agﬂ L

Equation (13c) was the starting point for Charnok and Robinson.
In the first tem in Eq. (13b) the double summation is merely the

complete sum over all samples so this term is merely BN(O). Thus Eq. (12)

reduces to

1) B0 =8 -L" L% (r.-n)
st N -ﬁazo S_a:ziﬂ i"

The second term in Eq. (14) contains the difference between the section
means and the long term mean and indeed should go to zero if the
sections become sufficiently long, leaving By(0) as desired.

The second tem in Eq. (14) can be further simplified by writing
it in terms of the covariance Bo(k), where

1 m-1 as+s-k
(]5) Bo(k) = m (fi'ﬂ (fi“‘k-ﬂ

a=0 ij=as+l

(f'i '?))2]



Thus multiplying out the terms in the double summation in the second
tem in Eq. (14) and regrouping using Eq. (15) gives

(162) B(0) - B,(0) = 1 [18 (1-5) + & By(2-s)eeees 2B (0) +.0es L B (s-1)]
(s=1)
21 ! K
16b = - 1- B, (K).
(16b) F e ¢ Ikly 5 (k)

If s and N are sufficiently large, then the summation in Eq. (16b)
can be approximated by an integral

S
(72) B,(0) - gy(0) # 1 [ 1 - L& sri) o

-S
S
28(0 kl\ Bk
(17b) =—é—l J Qa - 1;-1-) -B-é-o-;-dk
0

assuming B(k) is a symmetric function. The right hand side of Eq.
(17b) then has a form identical with Eq. (6b) if we put

o = — -
(17¢) w c t-l and N T.

To is as before time required for all N samples. The result is

T

_ 2 8,(0) t; B(t))
(17d) B(0) = 8, (0) - —¥— J (- gy

0

Equation (17d) can be derived in a slightly different fashion,
and a more complete comparison between the approaches of Lumley and
Panofsky presented first and of Charnok and Robinson can be presented
by interpreting the sum: in Charnok and Robinson's approach in a
particular way and by assuming a continuous rather than a sampled

10




trace. Thus consider the trace of duration Ty to be divided up into
sections each of duration T. Then identify the m intervals with
members of an ensenmble. One then computes the time average and the
time variance, i.e. the time average square deviation, about the time
average for each ensemble menber. The question asked then is how
does this ensemble average of the time variances depend on averaging
time, T, e.g., how Tong must T be in order for the ensemble average
time variance to approach the ensemble variance.

With the interpretations of the sums in mind we can rewrite
Eq. (12) by replacing the sum over "a" by an ensemble avera?e and

replacing the sum over "i" by a time average. Equation (12) becomes
T T
(18) Br(0) = < [ ir(e) - | #(t) el ot

0 0
and Eq. (14) similarly becomes

:
(18b) B.(0) = B(0) - <[.H f(t) dtT>
0

The second term on the right hand side of Eq. (18b) is identical to
the exp.2ssion in Eq. (4a? and can be similarly simplified giving

.
t
(18c) B(0) = (0) - 2BOL [ - by oty at,

0

which is the same as Eq. (17d), if we identify By(0) with the evnsenble
variance. This reinforces the concept of indi viﬂual time samples
being independent and being regarded as individual ensemble members.

It is interesting to note here that the same integral is used
in two different situations. In Eq. (6b) it gives the mean square
ensemble average difference between time and ensemble averages, denot-
ing the approach of these two averages with increased averaging time.
In Eq. (18c) it gives the ensemble average of the time variance, again
denoting the approach of the two with increasing averaging time.

There is one other result of Charnok and Robinson; a procedure

for processing the function Bg(0) in Eq. (17b) and Fig. 2 to give
dirvectly the covariance B(s). This expression is

n
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1 28,2
(19a) B(s) = B(0) - 5 3—2' (s BS(O))
s

——e

This result is obtained by differentiating szBS(O) with BS(O) taken from

Eq. (17a) to give

a2, 2 1
() L(s%s (0)) = 258, (0) - J B(K) dk
-s

2
(19¢) ;fz(szBs(O)) = 28,(0) - 2B(s)
Using the fact that

1 N =2
(20)  By(0) = & ; (£,-T)° = B(0)

and rearranging gives Eq. (19a). Thus, from averaging times it is
possible to pull out data on other than just averaging times.

It is also possible to express the approach of the averaging
time to its proper value as given in Eqs. (16b) and (17a) using a
spectral description, (Charnock and Robinson, 1957; Ogura, 1957;
Pasqui1l, 1962 and Smith, 1962). Thus, for example, introduce the
power spectrum S(w) given by

@) st =8t = [ s() et o

into Eq. (17a)

T ©
(22) 8.(0) = BN(O) - %-I dt (1 - -%—o J s(w) et ¢,
=T -

Performing the integration and using Eqs. (20 and (21) gives

sinz(%wT)

(23) B_(0) = | stw) |1 - d
s J, Lz |
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Equation (23) indicates the well-known fact that a finite averaging

time acts 1ike a frequency filter. The filter function in this case is
a- [sinfng)/(%mT)gz} which acts 1ike a high-pass filter, passing fre-
quencies higher than fo = 1/T. Thus the period of recording should be
sufficiently long to fa1thfu11y reproduce the lowest frequencies desired.

To summarize the results so far, it appears that an acceptable
averaging time for approach of time average and variance to the
corresponding ensemble averages might be deduced by plotting a set of
data in a manner indicated in Fig. 2a and adjusting the total amount of
data and length of sections until a curve similar to Fig. 2a is obtained.
The time average will then be a good representation to the ensemble
average. One should then check that the section durations are suf-
ficiently long that the lowest frequencies desired are reproduced.
:jna1;y it is possible to obtain the covariance from the curve in

19. a.

A third approach to averaging time considers measurement of power
spectra (Blackman and Tukey, 1958? of random stationary analog data,
normally distributed. Several steps of data processing are used.

First the data are processed to give the covariance which is then
multiplied by a bellshaped curve which forces the product to stay at

zero after some lag time Ty after which the covariance has become very
small, The product is then transformed to give the power spectrum and
the power spectrum is then averaged over an ensemble of situations. The
question posed is again, how long must the original data trace be in
order for the power spectrai value to be within a predetermined range, in
dB, say ninety percent of the time.

The averaging time question is answered quite simply for power
spectra because they folliow chi-square statistics. For such a case
the confidence 1imits are used to determine the number of degrees of
freedom, k, which are in turn related to the power spectrai mean and
variance as shown in Eq. (25).

(25) k= —2Plu)? ”
(<P(w) - <P(w)>)

These spectral averages are in turn related to the averaging time T and

the cutoff time Ty to give the desired results. The basic steps in the

derivation of this method will be outlined. The reader is referred to

g?e original source (Blackman and Tukey, 1958) for a more deta11ed
scussion.

To continue with the derivation outline, then, start with the time

trace X(t) of a single ensemble member. For that case the covariance
is given by (neglecting end of trace effects)

13



T/2
@) B = F [ x(eP xe) e
-T/2

For this same time trace, the power spectral density would then be

(27a) P(o) = J B(t) D(t) cos d
® /2

@) =} [det) cosur [ X(t) K at
- ~1/2

D(t) is a bell shaped function with the restrictions

D(r)
D(x)

1 T
T

0

v u

0
T

where T, is the value of t at which the covariance becomes neglegibly
small. D(t) eliminates noise arising from fluctuations for v > Tp.
The ensemble average of the power spectrum would then be

o T/2

(28a) <P(uw)> = %- I dr D(t) cos wr J <X(t-%) X(t+§9>dt
- ~1/2

(78b) . j dx D(x) B (x) cos ur

where

(29) B,(7) = <x(t+§o X(t-§o>
is the enserble covariance of X(t).

The mean square of the spectral density can also be estimated
Starting with Eq. (27b), we have for a single trace,

14
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2 Y] o] }"" }’2
(30) Pw) = o | dr | dr' dt dt' D(x) D(x') X(t-%)
el < 7 17

x(u-}) X(t'- i—l— ) X(t'+ %l—) €oS wr €OS wt"

Taking the ensemble average of both sides of Eq. (30) would give a
fourfold average under the integral sign. This can be evaluated
assuming the data, (the X's) are normally distributed. The result is

(31)  <X(tH) X(t-5) K(t'+57) K(t'-3)> = B_(t-t+T55) B (t-t' -

+ B(t-t'+ T5i) B (t-t'- L5E) + B (x) B,(x')

Equations (30). and (31) are evaluated in the spectral domain. The result,
when combined with Eq. (28a), is

Hz(m,w]) Pz(w]) dw-l

2. _1
<(P{w)=<P(w)>)"> =
(32) <(P(w)=<P(w)>)"> = 5= Jo

where H(u,w)) is a symmetrized transform of D(t). Finally Eqs. (29)
and (32) are evaluated assuming the P(w) does not change appreciably

over a spectral range 2n/T,. The results, when inserted into Eq. (25),
are .

- 2
2 ZTEJ Plo)H(e)dw] ..
(33) k= —25Plw)> = 0 _2T
<(P(w)~<P(w)>)%> 2 J Plu)H(e)2de  'm

Equation (33) is the basic result., It says that the number of
degrees of freedom as determined from the chi-square distribution and the

desired precision is given by 2T/Tp. This is then interpreted, as before,
as the number of statistically independent sections of data.

As another approach we might indicate what one could also apply

the chi-square distribution to finding the proper averaging time when
dealing specifically with the variance of a normally distributed stationary

15



;power spectrum and variance to the desired values. : o ;‘_

! i , .
random variable. For example, let a time trace be divided into sections l
each Ty long, so that they are essentially uncorrelated. Then the mean
variance formed from the variances of the individual traces should ' l
I
v

t

, follow a ‘chi-square distribution. Thus, one need merely use the chi-square

tables in conjunction with the ‘'desired precision to determine’ the
requ1s1te number of degrees ‘of freedom. This then gives the number of
sections of length T, 1n the total data run. .- o !
. To summarize, the study of averaging times must congcern the :
criterion for setting the averagi ng time, and the exact quantity ; [
.measured. Several examples appearing in the literature have been con-
'sidered associated with the approach of the time average valye of the
mean and the variance to the ensemblé value and the precision of the

0 l
! i f
{

PI-’ASE STRUCTURE FUNCTION STUDIES' rooe ! !

; o v ! | '

v d

In the exam'inat1 on of phase structure function various curves !
have been plotted to provide useful information for comparing résults
and for planning experiments. There are two.types of curves. The
fi rst type. shows spherica'l wave phase structure function as a function !

‘'separation for various ranges normalized to refractive'index parameter,
C . This data is intended for direct comparison with experimental results.:
e second type of curve shgws the contribution to spherical wave phase
structure function of various port1ons of the propagation path. These
curves of relative contribution versus distance are b'lotte d for various
seperations, for various values of the parameter 2kLS/L where A = 2n/k
is the wavelength, L is the total range and Ly is’ the turbulence outer

= ==

-

L

scale. They are also normalized to C A'Iso included are various paths, ¥
including horizontal and slightly inclined paths with the beam propagation 1}
both upward and downward. These curves are intended to be,useful in the S

design and interpretation of future experiments and in the possible | r
interpretation of present data i

I ' , ! [ §

, The curves are based on expressions ‘already in the 'Hterature P! ‘
(Car'l son, 1969)' derived using the Rytov approximation. The basic
expression for D (p) is ' | :

. ' '
! [ [
.

['_ b
(38)  Dg(p) = 8s” K J [1-900)] [ (4 cos(-,%(z—z)"— 8 (5 dz« o
] . o ' ‘. |

l

vhere A= 2n/k = 1ight wavelength :
p = observation point separation: i L :
k = spatial frequency -
L = rance I
Z = distance from transmi tter a'long propagation path
QN = refractive index spatial spectrum. , ; !



The i(n )x spatial spectrum used is the Von Karman spectrum given in
Eq. . .

g =lxky /5.92)%
0.033 Gi(H) e ©

= AL

(3%a) #,(x) =

(Bb) = 9 033 CZ(H) (Z + 172)TV/8

where 2 = turbulence inner 'scale, H = height.

{

The approximate form in Eq. (35b) was used because the phase structure
function is not generally measured at the separations comparable with

the inner scale, and the curves are for comparison with measured values.
For the slant paths the structure parameter was taken to vary with height
to the power (-4/3), (Wyngard et al, 1971) and the outer scale proportional
to altitude. These are valid in the first 500 ft for unstable air and well
developed turbulence.

(36a) cﬁ(uj = cﬁ(uo)(u/uo)j4/3.

{ |

(36b) L, (H) = lo(no)(ﬁzo |

{

o, H -H
- H . Z,L "o,
(36¢) H 1+¢ (T)
vhere Hy, = transmitter height

o

H = receilver.height.

Equation (36c) written with distance along the path as a parameter was
the actual, expression used.

The calculations were performed on a digital computer using
expressions derived from Eqs. (34) - (36). To find the incremental
pathlength contributions to Dg(p) the order of integrations in Eq. {34)
was ‘reversed, the resultant inner integral giving the desired incvemental
path contributions The calculations were made using normalized
dimension'less parameters

17



(372) u= L (H)x
(37) v = Z/L
(37¢) y = 2 Lg (Hy)/L

(374) c, = cﬁ(uo) k7/6,11/6 ¢(0)/0.13

(Tatarski, 1961) giving to Eq. (34) the form

1
(38a) D(p/L,) = 0.033 x 8:2C, x ()% x [ v F(u)
)
where
3} 21 1) 2
A _q (RUyy U Y \° ] ut
0 1 +v —-ﬂ—o

H -H
x (14 v(L—2))4/3
0

Of the reduced parameters, u is a reduced spatial frequency, v is
reduced range, y is the Fresnel number for an aperture the size of the
outer scale, and Cy is proportional to the spherical wave log amplitude
variance, often used as a scaling parametar. '

Figures 3a and 3b show the contribution to the normalized ghase
structure function for 8 separations (normalized) and for y = 10*3, The
normalized function, F(v) is insensitive to the parameter y and hence
Fig. 3a covers all of the experimentally interesting range of y. Fig.

3b shows that y has a larger (but still small) effect on F(v) for the
smaller separations (p/Lof This means that the range dependence in

F(v) is very nearly independent of wavelength, the values 10° <y = < 109
cover both 0.6u and 10u for ranges of interest. The wavelength dependence

is in the y5/6 part of the normalization constant in front of the integrals.

From Figs. 3a and 3b it is evident that the most important contributions
to Ds are made near the receiver for a horizontal path.

18
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Figures 4 and 5 show the normalized Ds integrand for an upward and
downward slant path respectively. In the upward path the curve amplitude
has “"saturated", so that a more nearly constant contribution to range
results. In the downward path the turbulence effects are strongly
concentrated at the receiver.

Having the functions in Figs. 3a and 3b it is a simple matter to
calculate the complete phase structure function.

The unnormalized phase structure function, for direct comparison
with experimental results, is presented in Figs. 6a, 6b, and 6¢c for the
three ranges of immediate interest.

Having developed the programs to calculate range dependence of
the phase structure function, it was also possible with only minor
modi fications to calculate the range dependence of the small aperture
angle of arrival correlation functions.

The small aperture elevation (B,) and the azimuth (Bg) angle of
arrival correlation functions are relafed to the phase structure function

by

2
_ 1 3D (D)
(39) BG(D) -2k2 a:2
_ 1 aDs(")
(40) BB(D) -Z_kz-p_ %

Equations 34, 39, and 40 may be used to find the contribution
totﬁ“ and Bg from various ranges, and (for simplicity) a horizontal
path.

1
(41)  By(R) = 4e® x .033 CB(H ) L_L1/3 J 6(v) dv
2 0 0
. J]‘i—u) w2 w2 u?\-11/6
6lv) = J po z cos (—)7 b -1})(17) du
o (D
0
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(42) B_(r2) = 442 x .033 ¢
0
< p 3 2
HO) = [ 90 (@D Y% cos? (L (L. 4y,
v lOLO\?_O Yy v

2
x (1+ %16 4 _ g0y,
v

Typical examples are shown in Figs. 7a and 7b.

The numerical calculations were done with double precision
(17 significant figures) arithmetic. A 96 point Gaussian quadrature

integration subroutine was used to do the inner integrations. The

numerical integration 1imits aré such as to yield better than 1.%
accuracy.

27



< 3bueu pazy|ewdou SA uoL3INqLAUOd

uotjouni uoije|ausod [eAtade jo d|bue pazyjewsou |eljuaaassig  c(qe)s By

- — - sIo—
- —1r0o—
; ) - —{so0—
- . Vz=4 ‘39NVY GIZITVANON -
.y 60" 80 10 90
_ _ _ oo A
< - O1=A -
i \\\ —0i’o
_ .~ |-
) .7 —sio -
- - - - . i )
. ) _- ]
(VOILN3AN) (01 401 =A - - - | )
K . ’ ) HiVd TVLNOZINOH —lozo
- : (4)H NOILVA3T3 , -
= (4)9 HINWIZY — — ——
; . - . o . -
- - ‘\ \\ Ol = b J\Q I P
- L — - - - ————Jog'o

NOILNBIYLNOD H,.I;'\id IVILN3Y344dIq

28




(*3u03)

"q, 614

Vz2=4 ‘39Nyy a3ZITVWYON

20'0—

—1S100—

10°0—

S000-

60 8'0 20 90 S0 &0 €0 - 20 o
= -~ - ] . ‘ /
. ~
~ 7 —s000
. S -/
(1) 9 HIMWIZY —=e ~ 3 7 -
(9 H NOILYA3T3 —— - . N~
sOISAS o1 - - S~ 5 —Jioo
Py B T -
- Gs= J\Qy

i

. NOLLABIYLNOD Hivd 1VIiN3u34410

!

29



- =

BIBLIOGRAPHY OF OPTICAL PROPAGATION
IN A TURBULENT ATMOSPHERE

The final item is a continuation of the bibliography included
in Ohio State University Report RF 2880-2, and includes journal articles
dealing with the effects of a turbulent atmosphere on electromagnetic
wave (generally 1ight beam) propagation. These articles are listed by
{eqr and then alphabetically by author. One of the major features of
his revised bibliography is the inclusion of Russian articles in Izv.
Vuz, Radio Fizika that have not been translated into the English edition
Soviet Radio Physics. These original Russian articles have English titles
and abstracts.

There was also some additional information on authors and journals
compiied from the complete bibliography. This information is presented
in two additional listings.

List 1 tabulates the journals surveyed, the years and the number
of entries found for the complete bibliography.

i Qs S oan SaEm e

List 2 gives an alphabetical tabulation of the first authors in
the complete bibliography and the years that they published.

o T S B
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1967

BOURKOV V 6 YASHIN YU 1ZV VUZ RADIOFIZ 10 1631-1638 1967
TO THE THEORY OfF ELECTROMAGNETIC WAVE REFRACTION IN TWO~DIMENSTONAL
INHOMOGENEOUS ISOTROPIL MEDIUM
GTALHEVA M E * RADIOPHYS 10 424 1967 (10 775 1967)
INVESTIGATION OF THE STATISTICAL PROPERTIES OF STRONG FLUCTUATIOMS IN THE
INTENSITY OF LIGHT PROPAGATI.D THROUGH THE ATMOSPHERE NEAR THE EARTH
KAZANTSEV A N LUKIN O RAD ENG ANC ELEC 12 1891-1910 1967
STUDY OF IONOSPHERE RADIOWAVE PROPAGATION

KOMISSAROV V M RANIOPHYS 10 270 1967 (10 498 1967)
FIELD OF A POINT SOURCE IN A RAMDOMLY NOMUNIFORM STRATIFIED MEDIUM
STREZH P E RAD ENG AND ELFC 12 13701377 1967

PLANE WAVES INCIDENT ON THE DIVISION BOUNDRY (VACUUM.INHOMOGENEOUS
ISOTROPIC MEDIUM)
TATARSKI V I 17V VUZ RADIOFIZ 1C 1762=-1765 1967
ESTIMATION OF LIGHT DEPOLARIZATION BY TURBULEMNT ATMOSPHERIC INWOMOGLMETIES
VVEDENSKIY B .. ET AL RAD ENG AND ELEC 12 1067-1890 1967
STUDY OF METERs DECIMETERs CENTIMETER, AND SUBMILLIMETER RADIOWAVE
PROPAGATION '

19¢68

ARSAEV I E KIMBER B E I’V Vuz RADIOFIZ 11 1377-1387 1968
ON GEOMETRIC-OPTICS APPROACH IN CONSIDCRATION OF WAVE PROPAGATION
IN INHOMOGENEOUS ABSORBIMG MEDIA

BAKHAREVA M F RAD ENG AND ELFC 13 983-9R88 1968
FREQUENCY SPACE CORRELATION 0OF THE FIFELD FLUCTUATIONS: AMPLITUDE AND
INTENSITY IN A MEDIUM WITH RAMDOM INHWNMOGENEITIES

BAKHAREVA M F RAD ENG AND ELEC 13 445454 1968
FREQUENCY SPACF CORRELATION OF AMPLITUUE ANN PHASE FLUCTUATIONS IN A
MEDIUM WITH FORTUITOUS HETEROGEMEITIFS

DEMYANENKO L N ET AL IZV VUZ RADTUFIZ 11 200-204 1968
SCINTILLATION OF OISCRFTE SOURCES IN TROPOSPHKRF

DOLIN L S IZV vUuZ RADIOFIZ 131 B840~849 1968
EQUATIONS FOR CORRELATION FUNCTIONS OF A WAVE DEAM IN A RANDOMLYe
INHOMOGENEOUS MEDIUM

GURVICH A S ET AL 12V VUZ RADIOFIZ 11 6£-71 1968
EXPERIMENTAL INVESTIGATIONS OF FLUCTUATIONS OF ARRIVAL ANGLE OF LIGKHT
UNDER THE CONDITIONS OF STROMG FLUCTUATIONS OF IHTENSITY

GURVICH A S ET AL 12V VUZ RADIOFIZ 11 1360-1370 1968
FLUCTUATIONS OF THE PARAMETERS OF A LASER LIGHT WAVE PROPAGATING IN
THE ATMOSPHERE

12,0V A O RAD ENG AND ELEC 13 11%5-1160 1968
FLUCTUATIONS OF THE AMPLITUDE AMD PHASE OF PLANE MONOCHROMATIC WAVE OF
SUBMILLIMETER WAVE AT PROPAGATION IN NEAR EARTH MEDIUM OF TUHBULENT
ATMOSPHERE WITH DUE REGARD FOR THE ARSORPTION IN WATER VAPOR

SHABELMIKOV A V RAD ENG AND ELEC 13 2115-2121 1968
ELECTROMAGNETIC WAVE REFRACTION IN THE EARTH ATMOSPHERE WITH LAMINATED
HETEROGENEITIES

SHISHOV V 1 I1ZV VUZ RADIOFIZ 131 866-875 1968
THE THEORY OF WAVE PROPAGATION IN RANDOM M<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>